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Shear Field-Flow Fractionation:
Theoretical Basis of a New,
Highly Selective Technique

J. CALVIN GIDDINGS and SUSAN L. BRANTLEY*

DEPARTMENT OF CHEMISTRY
UNIVERSITY OF UTAH
SALT LAKE CITY, UTAH 84112

Abstract

Shear field-flow fractionation (shear FFF) is described as an FFF system in which
shear forces are responsible for migration perpendicular to flow. It is shown that a
desirable configuration for shear FFF is a concentric cylinder system with one
cylinder rotating. After providing the relevant theoretical framework of FFF, the
equations of Shafer et al. describing shear migration are simplified and applied to the
limiting case of very thin annular spaces to get tractable retention expressions. On this
basis the maximum selectivity is predicted to be 3 or greater, a value considerably
higher than that for any other macromolecular separation technique. This high
selectivity is confirmed using an alternate shear migration theory developed by Tirrell
et al. However, it is shown that shear FFF is only applicable to macromolecules of
high molecular weight, perhaps ~107 and above. It may also be applicable to
globular particles.

INTRODUCTION

Field-flow fractionation (FFF) is a family of methods that has been
developed rather extensively for the analytical scale separation of macro-
molecules and particles (I-5). FFF is an elution method like chromatog-
raphy, but separation is achieved in the flowing carrier fluid without a
stationary phase and without any obstructions (such as column packing) in
the flow channel. The use of only one phase (the carrier fluid) is
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advantageous for macromolecules which often interact unfavorably and
irreversibly at active interfaces between two partitioning phases.

The role of the stationary phase in chromatography—to induce differential
retardation—is assumed by an external field or gradient. The external field
must be one that interacts with the component particles, forcing them to
migrate through the carrier fluid in the channel. However, the field is applied
in a direction perpendicular to the flow, forcing the component particles
toward one wall of the flow channel where they form a diffuse steady-state
layer. Since the flow velocity approaches zero upon approaching the wall, the
particles forced closest to the wall will be retarded to the greatest degree in
their displacement by flow down the channel. Thus the separation occurs
because different particle species are subject to different force levels from the
external field, forcing them into layers near the wall of different mean
thicknesses that are carried at unequal rates down the flow channel.

A number of fields and gradients have been proposed for use with FFF.
Only four of these have resulted in experimental success. These four are
electrical fields, thermal gradients, sedimentation fields, and flow or
hydraulic forces. These have led to the FFF subtechniques termed electrical
FFF, thermal FFF, sedimentation FFF, and flow FFF, respectively (3). [In
addition, a limiting form of FFF termed steric FFF is applicable to larger
particles, up to 100 um in diameter (6).] The four subtechniques complement
one another by virtue of different selectivities, different molecular weight
ranges, and different levels of effectiveness which depend on the polarity,
charge, density, etc., of the species of interest.

In this paper we present an initial evaluation of another subtechnique
which we shall term shear FFF. This study indicates that shear FFF would
have its own unique characteristics, both advantages and limitations, of such
a nature that it might find a useful role in the stable of analytical separation
techniques.

It is well recognized that gradients and shear forces will cause various
species to migrate in a direction perpendicular to flow (7-9). Thus shear
forces are obvious candidates to serve as the basis for constructing a new
type of FFF system. The first suggestion for a shear FFF system appeared in
one of the early disclosures of the FFF concept (/0).

The shear-induced lateral migration can assume one of several apparent
forms. In one form, flexible chain macromolecules tend to migrate through a
shear gradient, in most flow situations seeking out regions of minimum shear
(such as at the center of flow channels or stagnant pockets) where their
configurational entropy is greatest. Such shear effects have recently been
elucidated by Metzner (II). There are also shear forces originating in
hydrodynamic effects, sometimes termed the *“‘tubular pinch” effect. The
latter has been proposed as the basis of a separation system (72). More
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generally, shear migration is expected whenever nonhomogeneous flow is
encountered (13, 14).

Clearly, one could attempt in a direct manner to apply these shear forces in
FFF systems of more or less conventional design, consisting of simple flow
channels or tubes (12) in which shear always accompanies flow. However,
such an application would incorporate an immediate limitation on the normal
versatility of FFF systems. In normal FFF systems the field strength and the
flow rate can be controlled independently. This leads to substantial
advantages, first in establishing the initial steady-state layers during a so-
called stop-flow period, and following this the independent control and/or
programming of field and flow to provide flexible optimization with respect to
resolution, time, channel length, etc. However, if FFF were to utilize the
normal gradient in shear rate generated in simple channel flow, then the force
applicable to any species would be a function of the flow rate. In such an
instance the force and the flow rate could not be controlled independently,
leading to a loss of flexibility and perhaps serious conflicts in simultaneously
achieving suitable flows and forces. (A slightly unbalaced oscillatory flow
with a controllable net displacement rate might remove some of the above
objections; relaxation to the steady-state could occur at zero net dis-
placement.)

An analysis of the situation suggests that three active dimensions are
preferred for a truly effective shear FFF system. The normal displacement
flow must take place and be independently controllable along one axis. The
migration of particles toward a wall would occur along a second axis. The
flow responsible for shear effects would then occur along the third axis,
perpendicular to the first to allow independent flow control, and perpen-
dicular to the second in conformity with physical requirements.

The three-dimensional FFF system proposed above can be readily
realized in the annular space between two concentric cylinders. The rotation
of one cylinder induces a flow around the circumference of the device, This
flow leads to shear forces with a direction perpendicular to the walls. The
displacement flow can then occur independently along a third orthogonal
coordinate directed along the common axis of the cylinders.

THEORETICAL BACKGROUND

Field-Flow Fractionation

The flow profile and the relative orientation of field and flow in FFF are
indicated in Fig. 1. By convention, the field and flow vectors define the x and



13:27 25 January 2011

Downl oaded At:

634 GIDDINGS AND BRANTLEY

Parabolic flow
4 profile

Field
vector

Fi1G. 1. Schematic illustration of flow profile in an FFF channel.

z axes, respectively. The field, acting on entrained particles, induces an
average drift velocity U in the negative x direction (15, 16). The resulting
concentration gradient produces a counteracting diffusional flux which soon
balances the accumulation by drift, yielding a steady-state concentration
profile of the form

c(x) = cg exp <——)§> (1)

where ¢, is the concentration at the lower wall, x = 0, and /, a measure of the
mean thickness of the particle layer, is

D kT

"STUT TF 2)

where D is the diffusion coefficient, & is Boltzmann’s constant, T is
temperature, and F' is the force acting to displace each patrticle.

The dimensionless retention parameter A is defined as the ratio of layer
thickness / to column thickness w:

)\=_£____ D kT 3
w 1U[w |F'|w )

The critical quantity in an FFF separation device is the retention ratio R of
a particular zone, calculated as

Yo Lex)-ox)
Gy Le(x)<u(x))

R= (4)
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where v is the carrier flow velocity in axial direction z, 7" is the mean particle
velocity, <v> =<w(x)> is the cross-sectional average carrier velocity, and
{c(x)> is the cross-sectional average concentration. When these averages are
expressed as integrals and solved explicitly for flow between infinite parallel
plates, R is found to be related as follows to A (16):

R = 6\[coth (2M\)"! — 2)\] (5)

"As one approaches the generally desirable limit of small A, this becomes

R =6) (6)

Steric FFF

The above treatment assumes that particles can occupy the entire space
between two parallel walls. When particle radius a is a significant fraction of
[, this assumption is no longer valid because the centers of gravity of particles
are excluded by the particles’ own size from a thin layer near the walls. This
is termed a steric effect. The steric effect perturbs the distribution of particles
with respect to the wall, essentially pushing the particles further from the wall
and thus increasing the average particle velocity and the resulting retention
ratio R. The increment in R can be described approximately by adding a
steric term to Eq. (6), giving (17)

;
R=6\+ 6ya=6—+ 6y— 7
w w

where v is a flow-dependent term of order unity and a = a/w.
When the particles are sufficiently large and / is sufficiently small that
a > 1, Eq. (7) is dominated by the steric term, giving

R = 6ya/w (8)

Under these circumstances, the FFF method is termed steric FFF. The
transition from normal to steric FFF is interesting but complicated because
with normal FFF (controlled by the first term on the right-hand side of Eq. 7)
small particles generally migrate faster and elute ahead of large particles
whereas with steric FFF the elution order is inverted (/8).
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Selectivity

The efficacy of a macromolecular separation, whether attempted by
normal FFF, steric FFF, or size exclusion chromatography, can be related
to column efficiency and selectivity. Column efficiency, an index of the
narrowness of component zones, is measured by theoretical plate height and
the number of theoretical plates. For both FFF and chromatography, column
efficiency varies over wide limits depending upon conditions.

Column selectivity is a measure of the column’s intrinsic ability to
disengage component zones (I8, 19). While selectivity can vary somewhat,
there tends to be a maximum approachable value which clearly spells out the
fractionating power of a column.

Specifically, the mass selectivity is defined by (18)

dlog V, dlog R
52} o8 =} o8 (82)

dlogM dlog M

where M is the molecular weight and V, is the retention volume. The
maximum selectivity value for normal FFF can be shown to approach the
limit (19)

dlog A
S = [ Rk L (8b)
dlog M

Values of S, range from unity for sedimentation FFF to about 0.5 for
thermal and flow FFF and 0.33 for steric FFF. For size exclusion
chromatography, the values are considerably lower: 0.05 to 0.22 (19). The
difficulty (as measured by the required number of theoretical plates) of
achieving a separation increases with the inverse square of S,,,. Conse-
quently, the above differences are of great practical importance.

SHEAR FFF

With any new FFF subtechnique such as shear FFF, one of the principal
criteria of effectiveness is the above defined mass selectivity. In the following
theoretical development of shear FFF, we will obtain expressions for the
dependence of A on M, thus allowing an evaluation of S. We will find that §
is potentially higher than that for any of the techniques so far discussed,
approaching a maximum value of 3.
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Normally, FFF (normal or steric) is carried out in a ribbon-shaped
channel. However, the annular space between two concentric cylinders may
have special merit in some forms of FFF; among other things, the flow in
such a channel will avoid the disturbance of edge effects.

In the proposed shear FFF apparatus, the channel will of necessity consist
of the annular space between concentric cylinders to accommodate relative
rotation. With an inner cylinder of radius R, and an outer cylinder of radius
R, the column thickness w will simply be R, — R, (see Fig. 2). If R, >> w,
the annular channel will behave in most respects like an infinite parallel plate
channel of gap thickness w. Rotation of one cylinder at the angular velocity of
Q rad/s will create the shear force and particle drift necessary for separation.
Such circular Couette flow is described in standard textbooks (20). Carrier
flow in the axial direction is superposed over this angular flow. Studies (21,
22) have shown that for a Newtonian fluid, the shear and channel flows are
indeed superposable. Tanner found that the pressure drop along the axial
direction was not distorted by the shearing flow created by relative
rotation.

According to Shafer, the curvilinearity of the shear flow causes the inward
migration of polymer molecules. Shafer assumed a dilute solution of.
noninteracting polymer molecules. The derivation was based on the Zimmr
bead-spring model for large, random-coil polymers (23). The model entails "
N -+ 1 identical beads connected by N segments, which are mechanistically
equivalent to N Hookean springs, each with force constant 3k7/b*, where b
is the root-mean-square length of a spring, & is Boltzmann’s constant, and T’
is the absolute temperature. The model assumes that only the beads interact

-~

F1G. 2. End view of shear FFF channel consisting of concentric cylinders with radii Ry and R,.
The gap between cylinders is the FFF channel.
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with the solvent. The amount of hydrodynamic interaction is indicated by the
value of kA, the draining parameter. The variable # is a measure of the
freedom of fluid flow through the segmental polymer molecule

172

b= N fbead (9)
(1 23 )1/2b n

where f,.,q is the friction coefficient of one bead and # is the carrier

viscosity.

Zimm theory defines two limiting cases. In the limit of # = O, the free-
draining case, there is no hydrodynamic interaction between polymer
segments, This free-draining case refers to a polymer which does not perturb
the fluid velocity field. In the limit & 2> 1, the nondraining case, there is a
very large hydrodynamic interaction between segments. In this case the
carrier velocity at the center of the polymer chain is identical to the polymer
velocity at that point. The polymer chains then behave like rigid-sphere
molecules (24).

Shafer predicted that the inward migration velocity for the two cases would
be

_ —0.00845nL° ( 4Q2RIRY ) (10)
non kT (R% — R%)er
~0.000617f,,,b*°N* [ 4Q2R4RS
Ufree fl-) : ( p — > (11)
kT (R} — R}y

where L is the root mean square end-to-end length of the polymer molecule
and r is the distance along the radial coordinate. The coefficients 0.00845
and 0.000617 arise from analytical integration.

We note that the parenthetical expressions in Egs. (10) and (11) are
related to the shear rate K(r) by

4QRI{R;  K*(r) (12
Ri- R '

where K (r) is given by

2QR2R}

KO = R =&

(13)
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Clearly the shear rate K(r) increases as r approaches R,. The inward (i.e.,
negative) velocity predicted by Eqs. (10) and (11) indicates that the
macromolecules tend to move toward this region of increased shear strength.
High molecular weight polymers will thus move toward the inner cylinder.

In the limit of small w, a simpler expression for K2(r)/r is possible. Let

A= w/R,, A1 (14)
Then
R,=R,(1+ A) (15)
and
RS 1+ 4A + 6A%+ 4A% + A* 1 11
- = 1+ 3A +— A2
(R3— R?)? 4N+ 4A% + A* 4A? 4
1 3
+—A = —— A+ - (16)
2 16

which, to a first approximation, yields

R: - 17
(R3—RI}  4A? 4

This approximation will entail a fractional error of ~3A which, for example,
given a A of 0.01, is of the order of 3% error.
Similarly, to make the term r > more tractable, we define & by

r=R,(1+9) (18)

where § < A and thus & < 1. Substitution of this into #° and a Taylor
expansion yields

1 1
;=F(1—56+1562—3563+7064~---) (19)
1

The coordinate range of interest in practical FFF is a narrow range (a few
I’s in thickness) near the wall at R, where particle accumulation takes place.
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Thus &, far more than A, can be neglected by comparison to unity.
Consequently, the last equation can be approximated by

11
e (20

With the use of Egs. (17), (20), and (14), the expression of Eq. (12)

becomes

40RIRS Q2 QR
(R3 — R3yr? B R,A? oW 2h

When this is substituted into Eqgs. (10) and (11) and the absolute values of
the latter are used in Eg. (3), we get the retention parameter A for the
nondraining case

N DwkT (22
" 0.00845nL°QR, )
and for the free draining case
DwkT
(23)

Afrv::c.z—: AAr3Ien2
0.000617f,,,,b* N*Q2R,

In order to calculate the magnitude of these A values (and thus of FFF
retention) for specific polymers, we must estimate the polymer parameters
and relate them to polymer molecular weight.

In the Zimm model used to derive the lateral migration velocities, the root-
mean-square end-to-end distance L of the molecule is calculated as an
average of the end-to-end distance vector over the phase space distribution
function of the model (25). As long as N is large and the end-to-end distance
is smaller than about 0.5(N + 1)b, the distribution function of a completely
freely rotating chain can be approximated by a random flight distribution.
This yields

L=N'2p (24)

However, real polymers’ dimensions will differ from this prediction, partly
because the freely jointed chain model does not take into account the
physical impossibility of two beads occupying the same position. Due to this
excluded volume effect, the average dimension of the chain will be somewhat
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larger than that predicted by Eq. (24). A correction factor, the molecular
expansion coefficient «, is used to provide a better approximation (25).
Parameter « is a function of the polymer, the solvent, and the temperature.
Although the excluded volume effect predicts an a greater than unity, a poor
solvent can often be found such that a for a polymer is equal to 1. Such a
solvent is called a #-solvent and the temperature at which & equals 1 is called
the #-temperature. Equation (24) is applicable in a rigorous sense only to 4-
solvents; it is an approximation for other solvents.

In the Zimm model, the molecular weight M of the polymer is simply the
summation of the contribution of the identical beads, each of mass m:

M= (N+1ym=Nm (25)
The molecular weight dependence of L from Eq. (24) then is
L= M1/2(b2/m)1/2 = MI/ZB (26)

where B is a constant for a given polymer type. The theoretical prediction
that L is proportional to the square root of the molecular weight holds
rigorously, of course, only at the f-temperature of any particular solvent,

The approximate ratio B of end-to-end distance to the square root of the
molecular weight is needed in order to correlate the molecular weight of a
polymer to FFF retention for the nondraining model. This parameter can be
determined experimentally. Values for various polymers and solvents are
listed in standard tables (26).

Using B for the experimental ratio L/M'?, the retention parameter—
molecular weight relationship for the nondraining case is derived from Eq.
(22)

- DwkT 27)
" 0.00845nB°MS?QR,

The dependence of the diffusion coefficient D on molecular weight should
also be considered. We start with Einstein’s equation (24)

D=kT/f (28)

According to the Zimm model, the friction coefficient for the nondraining
polymer can be expressed by

Jaon = L1/0.192 (29)
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The diffusion coefficient can then be written as
D=0.192kT/Ln=0.192kT/BM''*n (30)
which can be inserted into Eq. (27) to give

N_— w(kT)?
Ot 0.0440n°B° MPQR,

(31)

This expression may incur a numerical error since there is some doubt as to
whether Eq. (29) is applicable in this particular situation of shear flow (7).
Equation (31) does, however, give an approximate indication of the
molecular weight dependence which is expressed in the third power term,
M?, This indicates that A is very sensitive to M and that the scparation
process is potentially very selective (sce below).

For the free-draining case, the frictional coefficient for the entire molecule
is simply the sum of the individual frictional coefficients of the N beads

(8):
f= Nﬂwcad (32)
With this equation and Eqgs. (25}, (26), and (28), Eq. (23) becomes

w(kT)>m’
0.000617 f2..sB* M*Q*R,

}\free = ( 3 3 )

This equation shows a fourth-power dependence of A on molecular weight,
suggesting an cven more selective separation than implied by the nondraining
model.

For both nondraining and free-drawing models applied to shear FFF, and
for most other FFF subtechniques as well, A is a simple inverse power
function of M:

A = const/M* (34)
Application of Eq. (8b) shows that
Spax = § (35)

We have just shown that the exponent s is 3 and 4 for nondraining and free-
draining models, respectively. Consequently, the respective maximum
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selectivity calculated in accordance with these models is 3 and 4. Both values
are extremely high, but it is important to know, specifically, which one is
applicable in practice.

Theoretical treatments (27-29) dealing with the dependence of various
polymer properties on £ indicate that there is no completely satisfactory
method available to approximate the behavior of polymers in which the
hydrodynamic interaction is intermediate between the free-draining and
nondraining cases. In general, the nondraining limit seems to apply to real
polymer solutions, especially those systems approaching the limit of infinite
dilution (24). Equations (27) and (31) can thus be surmised as the
expressions most applicable to an FFF system. We are thus led to the lesser
of the two proposed maximum selectivity values

R

S 3 (36)

The prospect that the mass selectivity of a shear FFF column might be in
the vicinity of 3 is rather exciting. As noted earlier, the selectivity of other
currently available polymer separation techniques is, at most, unity, the S,
value calculated for sedimentation FFF (I8, 19). Selectivity for exclusion
methods of chromatography (ge! filtration and ge! permeation chromatog-
raphy) are 5-20 times lower still, some 15- to 60-fold below that calculated
for shear FFF. A tripling in selectivity means that a shear FFF column can
be 1/9th the length and would need 1/9th the elution time necessary for a
sedimentation FFF column yielding results of comparable plate height. The
shear FFF column would need to have less than 1% of the theoretical plates
of an exclusion column for equivalent resolution.

ALTERNATE THEORY

The above treatment is based on the Zimm mode! of macromolecules,
which assumes a dilute solution of noninteracting chains, and upon the
Shafer theory of cross-migration. Departures from theory may arise because
underlying conditions are not fulfilled, or because the theoretical models are
not complete. In the former category we expect some difficulty with the
buildup of polymer at the inner cylinder, which may lead to concentrations in
excess of those appropriate for the Zimm model, and could cause signifi-
cantly increased viscosity and result in flow perturbations. Shafer noted that
although such effects would be generally negligible when working with
molecular weights of less than 10°, molecules the size of chromosomal DNA
might involve significant effects.
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iIn the latter category we note that Shafer assumes in his derivation that the
shear rate K(r) is constant over molecular dimensions so that the Couette
flow distribution function can be replaced with the simple shear laminar flow
distribution function. It is this approximation that Aubert and Tirrell claim to
improve substantially in their treatment (13).

The Aubert and Tirrell treatment of cross-streamline polymer migration in
Couette flow uses two models: the Rouse model which is a bead-spring
polymer model substantially similar to the Zimm model with 2 = 0 (30), and
an elastic dumbbell model (25). However, Aubert and Tirrell derive a cross-
migration velocity only for the elastic dumbbell model since they do not find
it possible to derive the configuration space distribution function of bead
positions for a Rouse model polymer in nonhomogeneous flow. Aubert and
Tirrell find that, for the dumbbell, Shafer’s approximation of constant shear
rate over molecular coordinates is applicable. The derivation under this
second treatment is not therefore a basic improvement upon Shafer’s original
treatment, but rather is valuable because it offers results for a complementary
model.

Foliowing procedures much like those above, the results can be shown to
yield

4wDH'’

— - 37
hTQ’R, (37)

db

This prediction of A, as noted, is based on the elastic dumbbell model which
consists of two beads connected by a spring with force constant H' and
relaxation constant 7. We use the expression (13, 9)

T = Sfoead/4H' (38)
and, as before (25),
H' = 3kT/b? (39)

where f; .4 and b are defined as previously for a freely jointed chain model.
With these substitutions we get

\. __l44DwkT (40)
C b R,

which resembles Eq. (23). The friction coefficient of the dumbbell, assuming
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free-draining, is again the summation of the individual friction coefficients of
the identical beads (25), f= 2fieaq, giving

Soead =112 (41

Using this and Eq. (28), both f;.,q and D can be expressed in terms of f,
giving

_ 288w(k T)? 4
b F2h*Q2R, (42)
If we can determine the molecular weight dependence of f and b, the
molecular weight dependence of Ay, will emerge for comparison with the A—
molecular weight relationships of the last section.

We note that for the extended bead-spring models, increasing molecular
weight is represented by an increasing number of beads and springs. For the
dumbbell model, increasing molecular weight must be envisioned as
equivalent to the physical growth of the dumbbell. Since the physical
dimension L ideally increases with M'/?, we must imagine the bead-to-bead
distance in the dumbbell to do likewise, giving us an expression parallel to
Eq. (26):

b=Bj M (43)

The friction coefficient must also increase with M in order to represent the
increasing drag of increasingly bulky molecules. If we assume, following
Stokes’ law, that f is proportional to viscosity n and to some characteristic
dimension of the particle (radius or diameter for spheres; b for dumbbells),
we have

f=nByM'"? (44)
The substitution of Egs. (43) and (44) into Eq. (42) yields

288w (kT)?

MNp ==
“ B§,M*n’ Q*R,

(45)

where constant BS, = BJ;2B,}. This A has exactly the same form as Eq. (31),
a fact demonstrating the consistency of the two treatments and reinforcing
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the expectation that the mass selectivity S will approach 3 for the shear FFF
system.

Although the above equations are highly approximate, we can use them to
estimate the molecular weight limits for which practical retention levels are
expected. If, for example, Eq. (31) is applied to an aqueous system
(n = 1072 poises) at room temperature containing a typical polymer with
(26) B=10"% cm/(g/mol), we get

20 2000
A~ ~
QX M/10°)*  (rpm)(M/108)

(46)

In any FFF system, practical retention occurs at R < (.5, corresponding
roughly to A < 0.1 (31). Thus angular velocities greater than about 15 rad/s
(approximately 150 rpm) show promise for separating macromolecules with
molecular weights on the order of 10° and above. Roughly 4500 rpm would
be required for M = 107. However, these values are highly approximate,
partly because of the high sensitivity of A to changes in B (sixth power); the
migration data of Shafer et al. suggest even stronger retention (lower X's).

EXTENSIONS AND LIMITATIONS

It is likely that shear FFF could also be used to fractionate globular
particles. The phenomenon of cross-streamline migration of small suspended
particles in shear flow has been studied ever since the investigations by Segré
and Silberberg (32, 33). Halow and Wills (34) investigated the cross-
streamline migration of spherical particles in circular Couette flow. They
found that neutrally buoyant spheres were carried to an equilibrium position
near the midpoint of the annular space, slightly closer to the inner than the
outer wall. In subsequent theoretical work, Halow and Wills (35) concluded
that the radial migration was caused by the drag exerted on the sphere
suspended in shear flow. However, they found it necessary to use an
empirical multiplier of 5 to correlate their theoretical predictions with
experimental findings.

Ho and Leal (36) developed a more extensive theory for the inertial
migration of rigid spheres in flowing suspensions. This theory needs no
empirical factors. They concluded that in simple shear flow, rigid spheres
will migrate to an equilibrium position halfway between the two confining
walls. In Couette flow, there is a tendency to migrate closer to the inner wall.
For an annular gap thickness w which is small compared to the cylinder radii,
particles in Couette flow could be expected to behave as if they were
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undergoing simple shear flow. Ho and Leal derived the following equation
expressing the radial force exerted on the neutrally buoyant particles due to
inertial effects

4
a
F=~p(QR\)’— G, (47)
w

where p is the solvent density, a is the particle radius, and &, is a function of
the particle distance from the wall. Ho and Leal gave values of G, for various
particle positions. Since G| changes sign at x = w/2, the theory predicts that
any neutrally buoyant particle will migrate to the centerline of the annular
space.

Ho and Leal did not deal explicitly with nonneutrally buoyant particles.
Halow and Wills derived an equation which indicates that nonneutrally
buoyant particles migrate toward different equilibrium positions. This
suggests that a shear FFF device might be used to separate particles of
differing densities. More experimental work and theoretical analysis is
clearly necessary to clarify this possibility.

The more recent work of Aubert, Prager, and Tirrell (/4) indicates that
cross-flow migration has the same origins for flexible chain macromolecules
as for rigid particles. Based on a comparison with work reported by Brenner
(37), particle size, not flexibility, appears to play a critical role in such
migration processes. Thus rigid particles of colloidal and larger dimensions
are likely subject to fractionation by shear FFF.

All the evidence we have cited suggests that shear forces are negligible for
small molecules and even for polymers of average dimensions. In all
likelihood, therefore, most of the particles to which shear FFF will be
applicable will have large effective diameters, probably 1 um or greater. For
such large particles, steric forces are almost always important, In some cases
they are dominant, leading to steric FFF. There is, of course, no inherent
difficulty in operating shear FFF in the steric mode. However, the selectivity
in the steric mode (~0.33 for globular particles, 0.50 for random chain
polymers) is far less than that expected (~3.0) for the normal form of shear
FFF, a value we have discussed earlier. Also, one must be careful to avoid
the transition region between steric and normal FFF because the two modes
of operation tend to nullify one another by virtue of the inversion of elution
orders (18).

An interesting consideration in the steric FFF (induced by shear,
sedimentation, or other fields) of large random-coil macromolecules such as
DNA is the elasticity of the random coil. It can be presumed that the random
coil would show some compression when forced against a wall by the lateral
force, thus reducing the effective profile height of the random-coil molecuie.
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This in turn would reduce the migration rate in the steric FFF mode. The
likelihood of a significant compressional displacement is supported by the
fact that the energy F'a of displacement of the random coil over its radius a is
approximately a// times thermal energy k7', as shown by Eq. (2). (Displace-
ment over a would correspond to the energy expended in partially flattening
the random coil.) Since the ratio a/l > 1 in steric FFF, compressional
energies will exceed &7 and deformation should therefore be significant.

In any experimental implementation of shear FFF, stable laminar flow is
desired. Turbulence can be avoided by using low rates of shear. Instabilities
are avoided by rotating the outer rather than the inner cylinder. Criteria are
provided by Landau and Lifshitz (38). For example, if the inner cylinder is
rotated, which may be an experimental advantage, instability is reached at
angular speeds described by Landau and Lifshitz as

Q= 41.3n/pw\v/wR, (48)

Thus in an experimental system with R, = 0.475 c¢m, R, = 0.500 c¢m, and
w = 0.025 cm, the limiting angular velocity would be on the order of 145
rad/s, or roughly 1400 rpm. Much higher rotation rates would be possible
with rotation of the outer cylinder.,

High angular velocities may cause centrifugal effects of sufficient
magnitude to influence retention. The centrifugal force on a particle rotating
around an axis can be expressed as (39)

Fi = (M/N,)(Ap/p)w’r (49)

where M is the molecular weight of the particle, N, is Avogadro’s number,
Ap is the difference between carrier density and particle density, p, is the
particle density, and w is the local angular velocity. The combination of Egs.
(3) and (27) yields the competing shear force

0.00845nB° M Q'R
|F'| = ; : (50)
Dw
The relative magnitude of the disturbance is therefore
Fi _ Dw(Ap/p)(r/R )0/ 1)
|F'| 0.00845nB° M** N

which depends rather strongly on molecular weight, visiosity, density
differences, etc. The ratio should be greater for globular particles than
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polymers because of the generally higher densities. The disturbance due to F;
can be reduced by rotating the outer cylinder, in which case w == 0 near the
inner cylinder where the particles accumulate, However, if . > |F'| at the
outer wall, there would be no mechanism for transferring particles from the
vicinity of the outer wall to the exponential layer near the inner wall so that
the process could begin.

We note also that shear FFF, like other forms of FFF, is subject to
overloading effects when sample size is too great. The effects may generally
be more serious for shear FFF because of the larger molecules employed.
The latter molecules may also show unusual effects because of their
susceptibility to distortion by shear. At sufficiently (unacceptably) high
shears, chain rupture may also occur. The critical rotation rate for the shear
degradation of various molecular weights of one water-soluble polymer
(polyacrylamide) in Couette flow has been determined by Abdel-Alim and
Hamielec (40).

Another possible disturbing factor in shear FFF is the heat released during
viscous shear and the development of temperature gradients to dissipate that
heat. Substantial gradients would be a source of convection and other
perturbations.

The temperature drop across the annular gap can be estimated using the
equation (41)

_ n(K(r)*w?
2k

AT (52)

where 1 is the solvent viscosity and « is the thermal conductivity of the
solution, This equation assumes that one cylinder wall is a heat barrier,
which is the worst possible case. Assuming that w = 0.025 cm, R, = 0.50
cm, n=0.01 gs™' cm™', and k = 6 X 10* erg/cm-s - K (values for water at
20°C), the calculated temperature drop is on the order of 107 X Q2. With
angular velocities as high as 200 rad/s (=2 2000 rpm), this still creates
thermal increments on the order of only 0.0004°C.

The problem associated with the additional drag caused by liquid at the
ends of the cylinder has been estimated in other experiments in which
annular column lengths were varied (42). According to Merrington (43). a
cylinder 100 times as long as the width of the annular space will exhibit
negligible end effects. A small annular space is also necessary in order to
guarantee a constant shear rate across the column,

When first injected into the shear FFF system, macromolecules are
distributed over the entire cross-section of the channel at the injection site. A
finite time is necessary for the molecules to “relax” into the steady-state
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exponential layer described by Eq. (1). To avoid zone distortions, flow must
be halted immediately after injection for a time adequate to achieve the
exponential distribution. It has been shown (16) that a simple expression for
an adequate stop-flow time in an FFF system is

tyop=w/U =w?>\/D (53)

which is just the time necessary to travel across the thickness w of the
channel at the induced field velocity U. For shear FFF, the necessary stop-
flow time can be expressed by substituting Eq. (27) into the above

wkT
0.00845nB° M’ /2 QR

(54)

ts top =

This equation shows that high molecular weight polymers require a
considerably shorter period of time to achieve steady-state conditions than
lower molecular weight polymers. For a polymer of molecular weight 10°
and an angular velocity of 100 rad/s in a water-filled shear FFF channel with
aw of 0.025 cm and radius of 0.50 c¢m, the relaxation time would be
approximately 3 min, which is an acceptable delay.

CONCLUSIONS

Our theoretical analysis suggests that a functional shear FFF system
would yield the highest selectivity known for the fractionation of polymers of
high molecular weight, The method is likely applicable to globular particles
as well. However, the shear effect is so intrinsically weak that only those
polymers of molecular weight ~107 or greater are likely to be resolved. A
good deal of experimental work is clearly needed to fully delineate the
potential of shear FFF.
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