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Shear Field-Flow Fractionation: 
Theoretical Basis of a New, 
High I y Selective Technique 

J .  CALVIN GIDDINGS and SUSAN L. BRANTLEY" 
DEPARTMENT OF CHEMISTRY 
UNIVERSITY OF UTAH 
SALT LAKE CITY, UTAH 84112 

Abstract 

Shear field-flow fractionation (shear FFF) is described as an FFF system in which 
shear forces are responsible for migration perpendicular to flow. I t  is shown that a 
desirable configuration for shear FFF is a concentric cylinder system with one 
cylinder rotating. After providing the relevant theoretical framework of FFF, the 
equations of Shafer et al. describing shear migration are simplified and applied to the 
limiting case of very thin annular spaces to  get tractable retention expressions. On this 
basis the maximum selectivity is predicted to be 3 or greater, a value considerably 
higher than that for any other macromolecular separation technique. This high 
selectivity is confirmed using an alternate shear migration theory developed by Tirrell 
et al. However. it is shown that shear FFF is only applicable to macromolecules of 
high molecular weight, perhaps -10' and above. It may also be applicable to 
globular particles. 

INTRODUCTION 

Field-flow fractionation (FFF) is a family of methods that has been 
developed rather extensively for the analytical scale separation of macro- 
molecules and particles (1-5). FFF is an elution method like chromatog- 
raphy, but separation is achieved in the flowing carrier fluid without a 
stationary phase and without any obstructions (such as column packing) in 
the flow channel. The use of only one phase (the carrier fluid) is 
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632 GlDDlNGS AND BRANTLEY 

advantageous for macromolecules which often interact unfavorably and 
irreversibly at active interfaces between two partitioning phases. 

The role of the stationary phase in chromatography-to induce differential 
retardation-is assumed by an external field or gradient. The external field 
must be one that interacts with the component particles, forcing them to 
migrate through the carrier fluid in the channel. However, the field is applied 
in a direction perpendicular to the flow, forcing the component particles 
toward one wall of the flow channel where they form a diffuse steady-state 
layer. Since the flow velocity approaches zero upon approaching the wall, the 
particles forced closest to the wall will be retarded to the greatest degree in 
their displacement by flow down the channel. Thus the separation occurs 
because different particle species are subject to different force levels from the 
external field, forcing them into layers near the wall of different mean 
thicknesses that are carried at unequal rates down the flow channel. 

A number of fields and gradients have been proposed for use with F F F .  
Only four of these have resulted in experimental success. These four are 
electrical fields, thermal gradients, sedimentation fields, and flow or 
hydraulic forces. These have led to the FFF subtechniques termed electrical 
FFF, thermal F F F ,  sedimentation FFF, and flow FFF, respectively ( 3 ) .  [In 
addition, a limiting form of FFF termed steric FFF is applicable to larger 
particles, up to 100 pm in diameter (6).] The four subtechniques complement 
one another by virtue of different selectivities, different molecular weight 
ranges, and different levels of effectiveness which depend on the polarity, 
charge, density, etc., of the species of interest. 

In this paper we present an initial evaluation of another subtechnique 
which we shall term shear FFF. This study indicates that shear FFF would 
have its own unique characteristics, both advantages and limitations, of such 
a nature that it might find a useful role in the stable of analytical separation 
techniques. 

It is well recognized that gradients and shear forces will cause various 
species to migrate in a direction perpendicular to flow (7-9). Thus shear 
forces are obvious candidates to serve as the basis for constructing a new 
type of FFF system. The first suggestion for a shear FFF system appeared in 
one of the early disclosures of the FFF concept (10). 

The shear-induced lateral migration can assume one of several apparent 
forms. In one form, flexible chain macromolecules tend to migrate through a 
shear gradient, in most flow situations seeking out regions of minimum shear 
(such as at the center of flow channels or stagnant pockets) where their 
configurational entropy is greatest. Such shear effects have recently been 
elucidated by Metzner (11). There are also shear forces originating in 
hydrodynamic effects. sometimes termed the “tubular pinch” effect. The 
latter has been proposed as the basis of a separation system (12). More 
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SHEAR FIELD-FLOW FRACTIONATION 633 

generally, shear migration is expected whenever nonhomogeneous flow is 
encountered (13, 14).  

Clearly, one could attempt in a direct manner to apply these shear forces in 
FFF systems of more or less conventional design, consisting of simple flow 
channels or tubes (12) in which shear always accompanies flow. However, 
such an application would incorporate an immediate limitation on the normal 
versatility of FFF systems. In normal FFF systems the field strength and the 
flow rate can be controlled independently. This leads to substantial 
advantages, first in establishing the initial steady-state layers during a so- 
called stop-flow period, and following this the independent control and/or 
programming of field and flow to provide flexible optimization with respect to 
resolution, time, channel length, etc. However, if FFF were to utilize the 
normal gradient in shear rate generated in simple channel flow, then the force 
applicable to any species would be a function of the flow rate. In such an 
instance the force and the flow rate could not be controlled independently, 
leading to a loss of flexibility and perhaps serious conflicts in simultaneously 
achieving suitable flows and forces. (A slightly unbalaced oscillatory flow 
with a controllable net displacement rate might remove some of the above 
objections; relaxation to the steady-state could occur at zero net dis- 
placement .) 

An analysis of the situation suggests that three active dimensions are 
preferred for a truly effective shear FFF system. The normal displacement 
flow must take place and be independently controllable along one axis. The 
migration of particles toward a wall would occur along a second axis. The 
flow responsible for shear effects would then occur along the third axis, 
perpendicular to the first to allow independent flow control, and perpen- 
dicular to the second in conformity with physical requirements. 

The three-dimensional FFF system proposed above can be readily 
realized in the annular space between two concentric cylinders. The rotation 
of one cylinder induces a flow around the circumference of the device. This 
flow leads to shear forces with a direction perpendicular to the walls. The 
displacement flow can then occur independently along a third orthogonal 
coordinate directed along the common axis of the cylinders. 

THEORETICAL BACKGROUND 

Field-Flow Fractionation 

The flow profile and the relative orientation of field and flow in FFF are 
indicated in Fig. 1. By convention, the field and flow vectors define the x and 
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634 GlDDlNGS AND BRANTLEY 

profile 

~ 

F I G ,  1. Schematic illustration of flow profile in an FFF channel. 

z axes, respectively. The field, acting on entrained particles, induces an 
average drift velocity U in the negative x direction (15, 26). The resulting 
concentration gradient produces a counteracting diffusional flux which soon 
balances the accumulation by drift, yielding a steady-state concentration 
profile of the form 

c ( x )  = co exp (-;) 
where c, is the concentration at the lower wall, x = 0, and 1, a measure of the 
mean thickness of the particle layer, is 

where D is the diffusion coefficient, k is Boltzmann’s constant, T is 
temperature, and F ‘  is the force acting to displace each particle. 

The dimensionless retention parameter X is defined as the ratio of layer 
thickness 1 to column thickness w :  

The critical quantity in an FFF separation device is the retention ratio R of 
a particular zone, calculated as 
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SHEAR FIELD-FLOW FRACTIONATION 635 

where zi is the carrier flow velocity in axial direction z ,  v i s  the mean particle 
velocity, GI> = <u(x)> is the cross-sectional average carrier velocity, and 
<c(x)> is the cross-sectional average concentration. When these averages are 
expressed as integrals and solved explicitly for flow between infinite parallel 
plates, R is found to be related as follows to X (26): 

R = 6A[coth (2X)-' - 2x1 ( 5 )  

As one approaches the generally desirable limit of small A, this becomes 

R = 6X (6)  

Steric FFF 

The above treatment assumes that particles can occupy the entire space 
between two parallel walls. When particle radius a is a significant fraction of 
I, this assumption is no longer valid because the centers of gravity of particles 
are excluded by the particles' own size from a thin layer near the walls. This 
is termed asteric eflect. The steric effect perturbs the distribution of particles 
with respect to the wall, essentially pushing the particles further from the wall 
and thus increasing the average particle velocity and the resulting retention 
ratio R. The increment in R can be described approximately by adding a 
steric term to Eq. (6), giving (17) 

1 a 
R = 6X + 6 y ( ~ =  6- + 67- 

W W 
( 7 )  

where y is a flow-dependent term of order unity and a = a/w. 

a >> I, Eq. (7) is dominated by the steric term, giving 
When the particles are sufficiently large and E is sufficiently small that 

Under these circumstances, the FFF method is termed steric FFF. The 
transition from normal to steric FFF is interesting but complicated because 
with normal FFF (controlled by the first term on the right-hand side of Eq. 7) 
small particles generally migrate faster and elute ahead of large particles 
whereas with steric FFF the elution order is inverted (28).  
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636 GlDDlNGS AND BRANTLEY 

Selectivity 

The efficacy of a macromolecular separation, whether attempted by 
normal F F F ,  steric FFF ,  or size exclusion chromatography, can be related 
to column efficiency and selectivity. Column efficiency, an index of the 
narrowness of component zones, is measured by theoretical plate height and 
the number of theoretical plates. For both FFF and chromatography, column 
efficiency varies over wide limits depending upon conditions. 

Column selectivity is a measure of the column’s intrinsic ability to 
disengage component zones (18, 19). While selectivity can vary somewhat, 
there tends to be a maximum approachable value which clearly spells out the 
fractionating power of a column. 

Specifically, the mass selectivity is defined by (18) 

d log V, 
d logM l = l  d l o g M  I d log R 

where M is the molecular weight and V, is the retention volume. The 
maximum selectivity value for normal FFF can be shown to approach the 
limit (19) 

d logX 

d logM 

Values of S,,,, range from unity for sedimentation FFF to about 0.5 for 
thermal and flow FFF and 0.33  for steric FFF .  For size exclusion 
chromatography, the values are considerably lower: 0.05 to 0.22 (19). The 
difficulty (as measured by the required number of theoretical plates) of 
achieving a separation increases with the inverse square of S,,,. Conse- 
quently, the above differences are of great practical importance. 

SHEAR FFF 

With any new FFF subtechnique such as shear FFF, one of the principal 
criteria of effectiveness is the above defined mass selectivity. In the following 
theoretical development of shear FFF, we will obtain expressions for the 
dependence of X on M ,  thus allowing an evaluation of S .  We will find that S 
is potentially higher than that for any of the techniques so far discussed, 
approaching a maximum value of 3.  
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SHEAR FIELD-FLOW FRACTIONATION 637 

Normally, FFF (normal or steric) is carried out in a ribbon-shaped 
channel. However, the annular space between two concentric cylinders may 
have special merit in some forms of FFF;  among other things, the flow in 
such a channel will avoid the disturbance of edge effects. 

In the proposed shear FFF apparatus, the channel will of necessity consist 
of the annular space between concentric cylinders to accommodate relative 
rotation. With an inner cylinder of radius R1 and an outer cylinder of radius 
Rl, the column thickness w will simply be Rz - R, (see Fig. 2). If R, >> w, 
the annular channel will behave in most respects like an infinite parallel plate 
channel of gap thickness w .  Rotation of one cylinder at the angular velocity of 
A2 rad/s will create the shear force and particle drift necessary for separation. 
Such circular Couette flow is described in standard textbooks (20). Carrier 
flow in the axial direction is superposed over this angular flow. Studies (21, 
22) have shown that for a Newtonian fluid, the shear and channel flows are 
indeed superposable. Tanner found that the pressure drop along the axial 
direction was not distorted by the shearing flow created by relative 
rot ation. 

According to Shafer, the curvilinearity of the shear flow causes the inward 
migration of polymer molecules. Shafer assumed a dilute solution of 
noninteracting polymer molecules. The derivation was based on the Zimm 
bead-spring model for large, random-coil polymers (23).  The model entails’ 
N + 1 identical beads connected by N segments, which are mechanistically 
equivalent to N Hookean springs, each with force constant 3kTlb2, where b 
is the root-mean-square length of a spring, k is Boltzmann’s constant, and T 
is the absolute temperature. The model assumes that only the beads interact 

FIG. 2. End view of shear FFF channel consisting of concentric cylinders with radii R ,  and R2.  
The gap between cylinders is the FFF channel. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



638 GlDDlNGS AND BRANTLEY 

with the solvent. The amount of hydrodynamic interaction is indicated by the 
value of h ,  the draining parameter. The variable h is a measure of the 
freedom of fluid flow through the segmental polymer molecule 

where dead is the friction coefficient of one bead and 17 is the carrier 
viscosity . 

Zimm theory defines two limiting cases. In the limit of h = 0, the free- 
draining case, there is no hydrodynamic interaction between polymer 
segments. This free-draining case refers to a polymer which does not perturb 
the fluid velocity field. In the limit h >> 1, the nondraining case, there is a 
very large hydrodynamic interaction between segments. In this case the 
carrier velocity at the center of the polymer chain is identical to the polymer 
velocity at that point. The polymer chains then behave like rigid-sphere 
molecules ( 2 4 ) .  

Shafer predicted that the inward migration velocity for the two cases would 
be 

where L is the root mean square end-to-end length of the polymer molecule 
and r is the distance along the radial coordinate. The coefficients 0.00845 
and 0.0006 17 arise from analytical integration. 

We note that the parenthetical expressions in Eqs. (10) and (1  1) are 
related to the shear rate K(r )  by 

where K ( r )  is given by 

2ClR:R: 
( R :  - R:)r2 

K ( r )  = 
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S H  EAR FI ELD-FLOW FRACTl ON AT1 ON 639 

Clearly the shear rate K ( r )  increases as r approaches R,  . The inward (i.e., 
negative) velocity predicted by Eqs. (10) and (11) indicates that the 
macromolecules tend to move toward this region of increased shear strength. 
High molecular weight polymers will thus move toward the inner cylinder. 

In the limit of small w ,  a simpler expression for K2(r) / r  is possible. Let 

Then 

R 2 = R , ( 1 + A )  ( 1 5 )  

and 

1 + 4A 4- 6A2 + 4A3 f A4 1 11 R ;  - - - -- ( 1 + 3 A + - A 2  
(R;  - R : ) 2  4A2 + 4A3 f A4 4A2 4 

which, to a first approximation, yields 

I 
=- R:! 

(R;- R:)2 4A2 

This approximation will entail a fractional error of -3A which, for example, 
given a A of 0.01, is of the order of 3% error. 

Similarly, to make the term r-’ more tractable, we define 8 by 

where 6 I A and thus 6 << 1. Substitution of this into r-’ and a Taylor 
expansion yields 

The coordinate range of interest in practical FFF is a narrow range (a few 
1’s in thickness) near the wall at R1 where particle accumulation takes place. 
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640 GlDDlNGS AND BRANTLEY 

Thus 8, far more than A ,  can be neglected by comparison to unity. 
Consequently, the last equation can be approximated by 

I 1 
r 5  R: 
-=- 

With the use of Eqs. (1 7), (20), and (1 4), the expression of Eq. (1 2) 
becomes 

When this is substituted into Eqs. (10) and (1 1) and the absolute values of 
the latter are used in Eq. (3 ) ,  we get the retention parameter X for the 
nondraining case 

and for the free draining case 

DwkT 
0 .000617 j&adb4N3~2R~ Xliee = 

In order to calculate the magnitude of these X values (and thus of FFF 
retention) for specific polymers, we must estimate the polymer parameters 
and relate them to polymer molecular weight. 

In  the Zimm model used to derive the lateral migration velocities, the root- 
mean-square end-bend distance L of the molecule is calculated as an 
average of the end-@end distance vector over the phase space distribution 
function of the model (25). As long as N is large and the end-to-end distance 
is smaller than about 0.5(N 4 l)b, the distribution function of a completely 
freely rotating chain can be approximated by a random flight distribution. 
This yields 

However, real polymers' dimensions will differ from this prediction. partly 
because the freely jointed chain model does not take into account the 
physical impossibility of two beads occupying the same position. Due to this 
excluded volume effect, the average dimension of the chain will be somewhat 
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SHEAR FIELD-FLOW FRACTIONATION 64 1 

larger than that predicted by Eq. (24) .  A correction factor, the molecular 
expansion coeficient a, is used to provide a better approximation (25). 
Parameter a is a function of the polymer, the solvent, and the temperature. 
Although the excluded volume effect predicts an a greater than unity, a poor 
solvent can often be found such that a for a polymer is equal to 1. Such a 
solvent is called a 0-solvent and the temperature at which LY equals 1 is called 
the 0-temperature. Equation (24) is applicable in a rigorous sense only to 6- 
solvents; it is an approximation for other solvents. 

In the Zimm model, the molecular weight M of the polymer is simply the 
summation of the contribution of the identical beads, each of mass m: 

M =  ( N +  I ) m  S N m  ( 2 5 )  

The molecular weight dependence of L from Eq. (24) then is 

where B is a constant for a given polymer type. The theoretical prediction 
that L is proportional to the square root of the molecular weight holds 
rigorously, of course, only at the &temperature of any particular solvent. 

The approximate ratio B of end-to-end distance to the square root of the 
molecular weight is needed in order to correlate the molecular weight of a 
polymer to FFF retention for the nondraining model. This parameter can be 
determined experimentally. Values for various polymers and solvents are 
listed in standard tables (26). 

Using B for the experimental ratio L/M'12, the retention parameter- 
molecular weight relationship for the nondraining case is derived from Eq. 
( 2 2 )  

DwkT 

0.00845~.B5M512SZ2R 1 
hl," = 

The dependence of the diffusion coefficient D on molecular weight should 
also be considered. We start with Einstein's equation (24)  

According to the Zimm model, the friction coeficient for the nondraining 
polymer can be expressed by 

f,,, = L v l 0 .  192 (29) 
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642 GlDDlNGS AND BRANTLEY 

The diffusion coefficient can thcn be written as 

D = 0.192kTlLq = 0.192kT/BM”2q 

which can be inserted into Eq. (27) to give 

MY( k T ) 2  
L m  = ~ 

0 . 0 4 4 0 ~ ~  B 6 M 3  R ’R I 

This expression may incur a numerical error since thcre is some doubt as to 
whethcr Eq. ( 2 9 )  is applicable in this particular situation of shear flow (7). 
Equation (3  1 )  does, however, give an  approximate indication of the 
molecular weight dependence which is expressed in the third power term, 
M‘. This indicates that X is vcry sensitive to M and that the separation 
process is potentially vcry selectivc (see below). 

For the free-draining case. the frictional coefficient for the cntire molecule 
is simply the sum of the individual frictional coefficients of the N beads 
(8):  

With this equation and Eqs. ( 2 5 ) ,  ( 2 6 ) ,  and (28) ,  Eq. ( 2 3 )  becomes 

w( k T)’ Inz 
0.0006 17 f ieadR4 M4 R’R, L e t  = ( 3 3 )  

This cquation shows a fourth-power dependence of on molecular wcight, 
suggesting an cven more selective separation than implied by thc nondraining 
modcl. 

For both nondraining and free-drawing models applied to shcar FFF, and 
for most other FFF subtechniques as well, X is a simple inversc power 
function of M :  

X = constlM’ (34) 

Application of Eq. (8b) shows that 

W e  have just shown that the exponents is 3 and 4 for nondraining and free- 
draining models, respectivcly. Consequcntly, the respcctive maximum 
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SHEAR FIELD-FLOW FRACTIONATION 643 

selectivity calculated in accordance with these models is 3 and 4. Both values 
are extremely high, but it is important to know, specifically, which one is 
applicable in practice. 

Theoretical treatments (2 7-29) dealing with the dependence of various 
polymer properties on h indicate that there is no completely satisfactory 
method available to approximate the behavior of polymers in which the 
hydrodynamic interaction is intermediate between the free-draining and 
nondraining cases. In general, the nondraining limit seems to apply to real 
polymer solutions, especially those systems approaching the limit of infinite 
dilution (24) .  Equations ( 2 7 )  and (31) can thus be surmised as the 
expressions most applicable to an FFF system. We are thus led to the lesser 
of the two proposed maximum selectivity values 

s,,, GE 3 

The prospect that the mass selectivity of a shear FFF column might be in 
the vicinity of 3 is rather exciting. As noted earlier, the selectivity of other 
currently available polymer separation techniques is, at most, unity, the S,,, 
value calculated for sedimentation FFF (18, 19). Selectivity for exclusion 
methods of chromatography (gel filtration and gel permeation chromatog- 
raphy) are 5-20 times lower still, some 15- to 60-fold below that calculated 
for shear FFF. A tripling in selectivity means that a shear FFF column can 
be 1/9th the length and would need 1/9th the elution time necessary for a 
sedimentation FFF column yielding results of comparable plate height. The 
shear FFF column would need to have less than 1% of the theoretical plates 
of an exclusion column for equivalent resolution. 

ALTERNATE THEORY 

The above treatment is based on the Zimm model of macromolecules, 
which assumes a dilute solution of noninteracting chains, and upon the 
Shafer theory of cross-migration. Departures from theory may arise because 
underlying conditions are not fulfilled, or because the theoretical models are 
not complete. In the former category we expect some difficulty with the 
buildup of polymer at the inner cylinder, which may lead to concentrations in 
excess of those appropriate for the Zimm model, and could cause signifi- 
cantly increased viscosity and result in flow perturbations. Shafer noted that 
although such effects would be generally negligible when working with 
molecular weights of less than 1 06, molecules the size of chromosomal DNA 
might involve significant effects. 
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644 GlDDlNGS AND BRANTLEY 

In the latter category we note that Shafer assumes in his derivation that the 
shear rate K ( r )  is constant over molecular dimensions so that the Couette 
flow distribution function can be replaced with the simpIe shear laminar flow 
distribution function. It is this approximation that Aubert and Tirrell claim to 
improve substantially in their treatment (13) .  

The Aubert and Tirrell treatment of cross-streamline polymer migration in 
Couette flow uses two models: the Rouse model which is a bead-spring 
polymer model substantially similar to the Zimm model with h = 0 (30), and 
an elastic dumbbell model (25) .  However, Aubert and Tirrell derive a cross- 
migration velocity only for the elastic dumbbell model since they do not find 
it possible to derive the configuration space distribution function of bead 
positions for a Rouse model polymer in nonhomogeneous flow. Aubert and 
Tirrell find that, for the dumbbell, Shafer’s approximation of constant shear 
rate over molecular coordinates is applicable. The derivation under this 
second treatment is not therefore a basic improvement upon Shafer’s original 
treatment, but rather is valuable because it offers results for a complementary 
model. 

Following procedures much like those above, the results can be shown to 
yield 

4wDH’ 
rk TSl’R , bl = ( 3 7 )  

This prediction of A, as noted, is based on the elastic dumbbell model which 
consists of two beads connected by a spring with force constant H‘ and 
relaxation constant z. We use the expression (13, 9 )  

and, as before (25 ) ,  

H’ = 3kT/b2  (39) 

where h e a d  and b are defined as previously for a freely jointed chain model. 
With these substitutions we get 

1440 wk T 
Ad,  = 

fbcadb4S12RI 

which resembles Eq. (23).  The friction coefficient of the dumbbell, assuming 
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SHEAR FIELD-FLOW FRACTIONATION 645 

free-draining, is again the summation of the individual friction coefficients of 
the identical beads (25), f = 2fbead, giving 

Using this and Eq. (28 ) ,  both &+%ad and D can be expressed in terms off, 
giving 

If we can determine the molecular weight dependence of f  and b ,  the 
molecular weight dependence of X d b  will emerge for comparison with the A- 
molecular weight relationships of the last section. 

We note that for the extended bead-spring models, increasing molecular 
weight is represented by an increasing number of beads and springs. For the 
dumbbell model, increasing molecular weight must be envisioned as 
equivalent to the physical growth of the dumbbell. Since the physical 
dimension L ideally increases with M"*, we must imagine the bead-to-bead 
distance in the dumbbell to do likewise, giving us an expression parallel to 
Eq. (26 ) :  

The friction coefficient must also increase with M in order to represent the 
increasing drag of increasingly bulky molecules. If we assume, following 
Stokes' law, that f is proportional to viscosity q and to some characteristic 
dimension of the particle (radius or diameter for spheres; b for dumbbells), 
we have 

The substitution of Eqs. (43) and (44) into Eq. (42) yields 

where constant B2b = BiL2BAZ. This X has exactly the same form as Eq. (3  I ) ,  
a fact demonstrating the consistency of the two treatments and reinforcing 
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646 GlDDlNGS AND BRANTLEY 

the expectation that the mass selectivity S will approach 3 for the shear FFF 
system. 

Although the above equations are highly approximate, we can use them to 
estimate the molecular weight limits for which practical retention levels are 
expected. If, for example, Eq. (31) is applied to an aqueous system 
(Q = poises) at room temperature containing a typical polymer with 
(26) B = lo-* cm/(g/mol), we get 

In any FFF system, practical retention occurs at R 5 0 . 5 ,  corresponding 
roughly to X 5 0.1 (31). Thus angular velocities greater than about 15 rad/s 
(approximately 150 rpm) show promise for separating macromolecules with 
molecular weights on the order of 10’ and above. Roughly 4500 ipm would 
be required for M =  10’. However, these values are highly approximate, 
partly because of the high sensitivity of X to changes in B (sixth power); the 
migration data of Shafer et al. suggest even stronger retention (lower A’s). 

EXTENSIONS AND LIMITATIONS 

It is likely that shear FFF could also be used to fractionate globular 
particles. The phenomenon of cross-streamline migration of small suspended 
particles in shear flow has been studied ever since the investigations by Segre 
and Silberberg (32, 33). Halow and Wills ( 3 4 )  investigated the cross- 
streamline migration of spherical particles in circular Couette flow. They 
found that neutrally buoyant spheres were carried to an equilibrium position 
near the midpoint of the annular space, slightly closer to the inner than the 
outer wall. In subsequent theoretical work, Halow and Wills (35) concluded 
that the radial migration was caused by the drag exerted on the sphere 
suspended in shear flow. However, they found it necessary to use an 
empirical multiplier of 5 to correlate their theoretical predictions with 
experimental findings. 

Ho and Leal (36) developed a more extensive theory for the inertial 
migration of rigid spheres in flowing suspensions. This thcory needs no 
empirical factors. They concluded that in simple shear flow, rigid spheres 
will migrate to an equilibrium position halfway between the two confining 
walls. In Couette flow, there is a tendency to migrate closer to the inner wall. 
For an annular gap thickness w which is small compared to the cylinder radii, 
particles in Couette flow could be expected to behave as if they were 
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SHEAR FIELD-FLOW FRACTIONATION 647 

undergoing simple shear flow. Ho and Leal derived the following equation 
expressing the radial force exerted on the neutrally buoyant particles due to 
inertial effects 

where p is the solvent density, a is the particle radius, and G, is a function of 
the particle distance from the wall. Ho  and Leal gave values of GI for various 
particle positions. Since G ,  changes sign a t x  = w / 2 ,  the theory predicts that 
any neutrally buoyant particle will migrate to the centerline of the annular 
space. 

Ho  and Leal did not deal explicitly with nonneutrally buoyant particles. 
Halow and Wills derived an equation which indicates that nonneutrally 
buoyant particles migrate toward different equilibrium positions. This 
suggests that a shear FFF device might be used to separate particles of 
differing densities. More experimental work and theoretical analysis is 
clearly necessary to clarify this possibility. 

The more recent work of Aubert, Prager, and Tirrell (14)  indicates that 
cross-flow migration has the same origins for flexible chain macromolecules 
as for rigid particles. Based on a comparison with work reported by Brenner 
(37), particle size, not flexibility, appears to play a critical role in such 
migration processes. Thus rigid particles of colloidal and larger dimensions 
are likely subject to fractionation by shear FFF .  

All the evidence we have cited suggests that shear forces are negligible for 
small molecules and even for polymers of average dimensions. In all 
likelihood, therefore, most of the particles to which shear FFF will be 
applicable will have large effective diameters, probably 1 pm or greater. For 
such large particles, steric forces are almost always important. In some cases 
they are dominant, leading to steric FFF .  There is, of course, no inherent 
difficulty in operating shear FFF in the steric mode. However, the selectivity 
in the steric mode (-0.33 for globular particles, 0.50 for random chain 
polymers) is far less than that expected (-3.0) for the normal form of shear 
FFF ,  a value we have discussed earlier. Also, one must be careful to avoid 
the transition region between steric and normal FFF because the two modes 
of operation tend to nullify one another by virtue of the inversion of elution 
orders (18). 

An interesting consideration in the steric FFF (induced by shear, 
sedimentation, or other fields) of large random-coil macromolecules such as 
DNA is the elasticity of the random coil. It can be presumed that the random 
coil would show some compression when forced against a wall by the lateral 
force, thus reducing the effective profile height of the random-coil molecule. 
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648 GIDDINGS AND BRANTLEV 

This in turn would reduce the migration rate in the steric FFF mode. The 
likelihood of a significant compressional displacement is supported by the 
fact that the energy F'a of displacement of the random coil over its radius a is 
approximately all times thermal energy kT, as shown by Eq. (2). (Displace- 
ment over a would correspond to the energy expended in partially flattening 
the random coil.) Since the ratio all >> 1 in steric FFF, compressional 
energies will exceed kT and deformation should therefore be significant. 

In any experimental implementation of shear FFF,  stable laminar flow is 
desired. Turbulence can be avoided by using low rates of shear. Instabilities 
are avoided by rotating the outer rather than the inner cylinder. Criteria are 
provided by Landau and Lifshitz (38). For example, if the inner cylinder is 
rotated, which may be an experimental advantage, instability is reached at 
angular speeds described by Landau and Lifshitz as 

Thus in an experimental system with R, = 0.475 cm, R, = 0.500 cm, and 
w = 0.025 cm, the limiting angular velocity would be on the order of 145 
rad/s, or roughly 1400 rpm. Much higher rotation rates would be possible 
with rotation of the outer cylinder. 

High angular velocities may cause centrifugal effects of sufficient 
magnitude to influence retention. The centrifugal force on a particle rotating 
around an axis can be expressed as (39) 

where A4 is the molecular weight of the particle, N, is Avogadro's number, 
A p  is the difference between carrier density and particle density, ps is the 
particle density, and w is the local angular velocity. The combination of Eqs. 
(3) and (27) yields the competing shear force 

0.00845 y B5 MS" a* R ,  
IF'I = (50)  DW2 

The relative magnitude of the disturbance is therefore 

which depends rather strongly on molecular weight, visiosity , density 
differences, etc. The ratio should be greater for globular particles than 
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SHEAR FIELD-FLOW FRACTIONATION 649 

polymers because of the generally higher densities. The disturbance due to Fi 
can be reduced by rotating the outer cylinder, in which case o 0 near the 
inner cylinder where the particles accumulate. However, if 3’; > IF’ 1 at the 
outer wall, there would be no mechanism for transferring particles from the 
vicinity of the outer wall to the exponential layer near the inner wall so that 
the process could begin. 

We note also that shear FFF ,  like other forms of FFF, is subject to 
overloading effects when sample size is too great. The effects may generally 
be more serious for shear FFF because of the larger molecules employed. 
The latter molecules may also show unusual effects because of their 
susceptibility to distortion by shear. At sufficiently (unacceptably) high 
shears, chain rupture may also occur. The critical rotation rate for the shear 
degradation of various molecular weights of one water-soluble polymer 
(polyacrylamide) in Couette flow has been determined by Abdel-Alim and 
Hamielec (40). 

Another possible disturbing factor in shear FFF is the heat released during 
viscous shear and the development of temperature gradients to dissipate that 
heat. Substantial gradients would be a source of convection and other 
perturbations. 

The temperature drop across the annular gap can be estimated using the 
equation (41) 

where is the solvent viscosity and u is the thermal conductivity of the 
solution. This equation assumes that one cylinder wall is a heat barrier, 
which is the worst possible case. Assuming that w GX 0.025 cm, R ,  0.50 
cm, q 6 X lo4 erg/cm*s*K (values for water at 
20°C), the calculated temperature drop is on the order of X s Z 2 .  With 
angular velocities as high as 200 rad/s (s 2000 rpm), this still creates 
thermal increments on the order of only 0.0004”C. 

The problem associated with the additional drag caused by liquid at the 
ends of the cylinder has been estimated in other experiments in which 
annular column lengths were varied ( 4 2 ) .  According to Merrington (43) .  a 
cylinder 100 times as long as the width of the annular space will exhibit 
negligible end effects. A small annular space is also necessary in order to 
guarantee a constant shear rate across the column. 

When first injected into the shear FFF system, macromolecules are 
distributed over the entire cross-section of the channel at the injection site. A 
finite time is necessary for the molecules to “relax” into the steady-state 

0.01 g s-’ cm-I, and K 
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650 GlDDlNGS AND BAANTLEY 

exponential layer described by Eq. (1). To avoid zone distortions, flow must 
be halted immediately after injection for a time adequate to achieve the 
exponential distribution. It has been shown (16) that a simple expression for 
an adequate stop-flow time in an FFF system is 

rstop = w/U = w2X/D (53) 

which is just the time necessary to travel across the thickness w of the 
channel at the induced field velocity U. For shear FFF,  the necessary stop- 
flow time can be expressed by substituting Eq. (27) into the above 

w 3 k T  
0.00845 q@ w /  R2 R, ~ S L r J ,  = (54) 

This equation shows that high molecular weight polymers require a 
considerably shorter period of time to achieve steady-state conditions than 
lower molecular weight polymers. For a polymer of molecular weight 10* 
and an angular velocity of 100 rad/s in a water-filled shear F F F  channel with 
a w of 0.025 cm and radius of 0.50 cm, the relaxation time would be 
approximately 3 min, which is an acceptable delay. 

CONCLUSIONS 

Our theoretical analysis suggests that a functional shear F F F  system 
would yield the highest selectivity known for the fractionation of polymers of 
high molecular weight. The method is likely applicable to globular particles 
as well. However, the shear effect is so intrinsically weak that only those 
polymers of molecular weight -lo7 or greater are likely to be resolved. A 
good deal of experimental work is clearly needed to fully delineate the 
potential of shear F F F .  
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